Processes of Removing Zinc from Water using Zero-Valent Iron

نویسندگان

  • Tomasz Suponik
  • Antoni Winiarski
  • Jacek Szade
چکیده

Zero-valent iron has received considerable attention for its potential application in the removal of heavy metals from water. This paper considers the possibility of removal of zinc ions from water by causing precipitates to form on the surface of iron. The chemical states and the atomic concentrations of solids which have formed on the surface of zero-valent iron as well as the type of the deposited polycrystalline substances have been analyzed with the use of X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The BET surface area, the pH at point of zero charge (pHPZC), the ORP of the solutions, and the pH and chemical concentrations in the solutions have also been measured. Furthermore, the paper also considers the possibility of release of zinc from the precipitates to demineralised water in changing physicochemical and chemical conditions. In a wide range of pH values, Zn x Fe3 - x O4 (where x ≤ 1) was the main compound resulting from the removal of zinc in ionic form from water. In neutral and alkaline conditions, the adsorption occurred as an additional process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Method of Synthesis of Stable Zero Valent Iron Nanoparticles (Nzvi) by Chelating Agent Diethylene Triamine Penta Acetic Acid (DTPA) and Removal of Radioactive Uranium From Ground Water by using Iron Nanoparticle

Nowdays,  iron  nanoparticles  due  to  their  unique  characteristics  are used  in  all  of  sciences  and  technology.  These  nano  particles  due  to their  electrical, magnetic,  optical  and  catalytic  properties  and  having high  area  and  activity  that  is  promped  by  their  small  size  and most importantly  many  scientists  from  the  entire  world  are  interested  in th...

متن کامل

Inactivation of Heterotrophic Bacteria in Well Water Using ZVI, TiO2 and ZnO Nanoparticles

Background & Aims of the Study: The heterotrophic bacteria are widely used as a water microbial pollution index for drinking water. The aim of this study was to investigate the effect of metallic nanoparticles such as Zero Valent Iron (ZVI), Titanium dioxide (TiO2) and Zinc oxide (ZnO) on Heterotrophic Bacter...

متن کامل

Degradation of Low Concentrations of Formaldehyde in Sono Catalytic Ozonation Advanced Oxidation Processes using Zero-valent Iron

The purpose of the current study is to evaluate formaldehyde degradation ratio with various methods in a batch reactor. In this work, the ozonation, sonolysis (ultrasonic), and ozone sonolysis, sono catalytic ozonation (SCO), and nano zero-valent iron catalyst processes were investigated for removal of formaldehyde. In addition, the influence of important factors such as pH (5–9), ultrasonic po...

متن کامل

Soil Remediation Using Nano Zero-valent Iron Synthesized by an Ultrasonic Method

A new method for the synthesis of nano zero-valent iron (nZVI) was developed in the present study. Ultrasonic waves, as a novel method, were used to synthesize the nanoparticles. The morphology and surface compositions of the particles were characterized by using FESEM, XRD, BET, and particle size analyzer. The synthesized nanoparticles were then utilized as a Fenton-like catalyst to degrade of...

متن کامل

Response Surface Methodology Modeling to Determine of Trace Amounts of Phenolic Compounds Using Silver Modified / Zero Valent Iron/ Fe3O4@G Nanocomposite

In this study, a simple and fast magnetic dispersive solid phase extraction methodology was developed G@Fe3O4/Fe/Ag nanoparticles for preconcentration and determine of phenolic compounds in water samples. The sorbent was characterized by assorted characterization method. The effects of diverse factor on the extraction process were studied thoroughly via design of experiment and desirability fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 226  شماره 

صفحات  -

تاریخ انتشار 2015